El santo grial de la energía ilimitada: ¿qué tan lejos estamos de conquistar la fusión nuclear y lograr un exitoso sol artificial?
China estableció a finales de diciembre un récord con su sol artificial, como se conoce al reactor nuclear denominado Tokamak Superconductor Experimental Avanzado (EAST, por sus siglas en inglés), al mantener la temperatura de plasma cerca de 70 millones de grados centígrados por 1.056 segundos, o 17 minutos y 36 segundos. Sin embargo, aunque este logro ha sentado una sólida base científica y experimental hacia el funcionamiento de un reactor de fusión, que en el futuro conduciría a una verdadera revolución energética, es posible que la humanidad aún esté lejos de alcanzar este objetivo.
Un reactor de plasma es capaz de reproducir las reacciones físicas que ocurren en el Sol y otras estrellas y utilizar el potencial de la fusión nuclear como fuente de energía ilimitada, limpia (no produce desechos radiactivos) y que no precisa un combustible no renovable como el uranio. Desafortunadamente, todavía existen grandes trabas para controlar esas reacciones.
En el proceso de fusión nuclear dos núcleos atómicos ligeros se combinan para formar un solo núcleo más pesado y se emiten al mismo tiempo enormes cantidades de energía. Para poder fusionarse en nuestro Sol, estos núcleos necesitan colisionar unos contra otros a temperaturas altísimas (de más de 10 millones de grados Celsius), lo que es posible gracias a la inmensa gravedad del astro, explica el Organismo Internacional de Energía Atómica (IAEA).
Para lograr en la Tierra el efecto que la enorme fuerza gravitatoria del Sol tiene sobre los núcleos (y que incrementa sus posibilidades de colisión), se precisan temperaturas superiores a los 100 millones de grados Celsius y una intensa presión para conseguir que el deuterio y el tritio (dos tipos de hidrógeno) se fusionen. De acuerdo con la IAEA, también se necesita «un confinamiento suficiente para retener el plasma y mantener una reacción de fusión durante un lapso lo suficientemente prolongado como para obtener una ganancia de potencia neta».
Obstáculos
Pese a que los experimentos han logrado recrear condiciones que dan pie a la fusión nuclear, aún es necesario trabajar en mejorar las propiedades de confinamiento y la estabilidad del plasma resultante. Cualquier contacto del plasma con la pared del reactor hace que se apague instantáneamente sin causar daños graves a la pared. Esta característica los hace muy seguros, pero al mismo tiempo se ha convertido en el principal obstáculo para el desarrollo de este tipo de energía, porque el plasma caliente enrarecido es extremadamente difícil de mantener bajo control. Científicos e ingenieros continúan buscando nuevos materiales y tecnologías con miras a lograr una energía de fusión estable.
Actualmente, se han desarrollado dos métodos para que la fusión se produzca. El tradicional, denominado confinamiento magnético, se lleva a cabo en reactores de tipo tokamak (acrónimo ruso de ‘cámara toroidal con bobinas magnéticas’), que utilizan imanes para presionar el plasma de las paredes de su contenedor, de modo que se pueda calentar a altas temperaturas por métodos externos. Por desgracia, este todavía tiene sus inconvenientes, pues la corriente eléctrica afecta el plasma y empeora su estabilidad.
Por otro lado, está el confinamiento inercial, proceso que emplea potentes láseres para calentar y presurizar un material, y que hacen que los gránulos de combustible finalmente exploten. De este modo, y según los cálculos, este enfoque puede reducir los costos de energía exponencialmente en comparación con el calentamiento en reactores tokamak. No obstante, este método presenta un problema relacionado con las pérdidas tangibles de energía durante la operación del reactor. Cuando el proceso se acerca a la rentabilidad energética —cuando se obtiene más energía que la invertida para desencadenar la fusión— la reacción se vuelve inestable.
Hasta el momento el mayor reto es producir más energía de la que se ha invertido para que la reacción funcione y que esta se mantenga en el tiempo.
SC
Fuente: RT