IA predice estructura de proteínas conocidas por la ciencia

La compañía DeepMind, con su programa AlphaFold de inteligencia artificial y la colaboración del Instituto Europeo de Bioinformática, logra predecir la forma en 3D de más de 200 millones de proteínas de los organismos de la Tierra. Los resultados se ofrecen en abierto a la comunidad científica para ayudar a investigar los seres vivos y resolver problemas globales como el hambre y las enfermedades.

Mediante inteligencia artificial (IA), la empresa británica DeepMind y el Instituto Europeo de Bioinformática del Laboratorio Europeo de Biología Molecular (EMBL-EBI) han conseguido realizar predicciones de las estructuras tridimensionales de casi todas las proteínas conocidas y catalogadas por la ciencia para ofrecerlas, de forma gratuita y abierta, en la base de datos de estructuras de proteínas AlphaFold.

Esta herramienta y base de datos de DeepMind, adquirida a su vez por Google en 2014, se ha ido desarrollando en los últimos años, pero la novedad ahora es que se amplía unas 200 veces, de casi un millón de estructuras de proteínas a más de 200 millones, cubriendo casi todos los organismos de la Tierra, cuyo genoma ha sido secuenciado.

Esta actualización incluye estructuras proteicas predichas para multitud de especies, incluidas plantas, bacterias, animales y otros organismos, lo que abre nuevas vías de investigación en ciencias de la vida con impacto en desafíos globales, como la sostenibilidad, la falta de alimentos y enfermedades olvidadas, según informa el EMBL-EBI.

Además, este lanzamiento abrirá nuevas vías de investigación en bioinformática y computación, al permitir a los investigadores detectar patrones y tendencias en la base de datos. También, se presentarán las estructuras predichas de las proteínas en UniProt (universal protein), un repositorio central de referencia.

“AlphaFold ahora ofrece una vista en 3D del universo de las proteínas”, destaca la directora general del EMBL, Edith Heard. Por su parte, el fundador y director ejecutivo de DeepMind, Demis Hassabis, añade: “Nos ha sorprendido la velocidad a la que se ha convertido en una herramienta esencial para cientos de miles de científicos en laboratorios y universidades de todo el mundo”.

“Desde la lucha contra las enfermedades hasta la contaminación por plásticos, AlphaFold ya ha permitido un impacto increíble en algunos de nuestros mayores desafíos globales –añade–. Nuestra esperanza es que esta base de datos ampliada ayude a muchos más investigadores en su trabajo y abra vías completamente nuevas de descubrimiento”.

VTV/CC/EMPG
Fuente: SINC